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Heat conduction in a fermionic crystal

R F Streater

Department of Mathematics, King’s College, Strand, London WC2 R2LS, UK, and
Universitit Leipzig, Fachbereich Physik, Augustusplatz 10, O-7010 Leipzig, Federal
Republic of Germany

Received 15 September 1992

Abstract. Linear diffusion in a system of non-interacting Fermion oscillators is constructed
using the methods of statistical dynamics. The temperature distribution is shown to obey
the heat equation C,(T)8T /8t = Adiv (Co(T) grad T) /2 where C, = J{E}/IT
is the heat capacity/molecule. An example shows that the system violates the ‘principle
of minimal entropy production’ at a stationary state. The model confirms the similar
conclusion drawn by M J Klein in 1958

1. Introduction and summary

The Fermion analogue of the Einstein crystal [1] consists of non- interacting atoms,
one at each vertex of a cubic lattice A with two energy levels, 0 and hw. Let
(1 — s;, s;) denote the probability distribution of site jeA. This defines the
temperature T; at j by

s; =€ (1 4 e fihe) kpT; =1/8;. 1.y

The average energy (E) of site j is Aws
HEY/OT = hwds/OT.

We shall describe the dynamics of heat conduction through the crystal by a
stochastic model, which leads to the heat equation

;» and the specific heat/atom is Cy =

ds(z,1) -

Ao
ai i—dwgrad s(x, ). (1.2)

Since s is a function of T(xz,t), we get ds/df = ds/dT dT /d¢ etc, leading to an
equation for T'(z,t):

ar A

C 5 div (Cy grad T(z, 1)). (1.3)

T
At the boundary of the crystal, the inward heat flow is at the rate A/2 8 E(=z,t)/0n
where n is the outward normal, and so the flow of entropy (created by the system)
at a stationary distribution is:

A hw Jds(z,t) . 4§

§=3 aa T(z,1) 8n (-4
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Prigogine et al [2], using ‘non-equilibrium thermodynamics’, have suggested that the
rate of entropy production decreases along the orbit, and reaches a minimum at the
stationary distribution, at least, if we start in a neighbourhood of the stationary point.
If true for the heat equation, this would indeed be a remarkable variational principle.
However, we show from a sunple discrete model that, while &> S i8 indeed zero at the
stationary solution, it is not a minimum. This was shown to be the general situation
for chemical reactions at a fixed temperature by Denbigh [3], who correctly pointed
out the approximate nature of Prigogine’s argument. A detailed stochastic model,
suggested by Klein, shows the same result [4]. Our model turns out to be equivalent
to Klein’s in a mathematical sense; this helps to clarify the argument in Kittel’ book

[4)-

2. The stochastic model

This is an example of the construction described in [5} Let Q; = {0,1} forall je&
A be the sample space at each point, and = A S be the total sample space.
The state of the system is described by a probablflty p on §); the state space of Q2
will be denoted (). If s; € (Q;), then s; = (1~ s;,5;),0 < s; < LThe points
of the lattice are mdependent in the state p e () 1f and only 1f p is a product:

= ®;¢a 8;- Each p € £(Q2) defines its marginal distributions S )'J(Q ), obtained
by summing over 2}l configurations except the component in {2;:

pi{o;) = 3 plw) o; EQ;. 2.1

w=l], we  wise;

Then ®; D, is the product state with the same marginal distributions as p itself. We

all ®;ey P, = Qp the Stosszahlansatz. It coincides with the diagonal quasifree map

of [6] when Q is identified with a fermion system. It is known that Q is entropy

non-decreasing,

. Diffusion will be represented by a bistochastic map T : Z(2) — Z(Q2), followed
by the map Q

S; =+ @iepasy — T(@jéj) — QT( J) ®35A5 22)

This gives one time-step in the evolution of the state, which can be described by
the occupation numbers s;(t), t = 0,1,2..., where s,(f + 1) =s; (t)

We choose T as follows. T each pair ik of neighbours ln A, consider
X(§2;z8l; ), on which we define

0 o 10 11
01 I-A A 0<A<L (2.3)
10 A 1=2
11 1

The product state ®s; in this basis restricted to D(f2; x @), is the 4-vector
i @8k = (1= 8; 01~ 5:),(1 — 5;)54,5;(1 - sk)asgsk}t The mapping T,
leaves s;(i # j, k) unchanged, and changes 8; ® g int0 Tjp(s; @ sp)s namely
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(L= 5;)(1 = 50, (1= A1 = 8,03 + As; (1= 8,), ML= 8,)8 + (1= N)s;(1 -
5:),8;8;) = (Pns P> Pg» P1y) Say. The marginal distributions, called s}, s}, are
determined by the occupation numbers s; = pjy + py; = §; + A(s; — s;), the
quadratic terms cancelling. We see that the net rate of increase of s; is proportional
to the number—particle gradient s, — s; (k and j neighbours), with rate \.

The full map T is the convex sum of all T, (with equal weights). For example,
if j, % are neighbours on the line ie. k = j+ 1, or k = j —1, give rise to the convex
sum L(T;_; ; + T;; 1) and the time evolution from this is

s;=sj+%,\(sj+1—zsj+sj_1) if j-1,7,d+1€A. 2.4
In the continuum limit we get the heat equation for s{z,t), and in 3 dimensions we
get similarly equation (1.2), leading to (1.3) as explained there.

The boundary condition comes when not all of 7 — 1,4,7 + 1 lie in A, and only
one term in %(T}‘—I,J‘ + T} ;1) is non zero. So the rate of change of s;,7 € A, is
1A(s;41 — 8;). This leads to (1.4) in the continuum Hmit.

3, The three-atom crystal

Take A = {0,1,2} ie. has three atoms, and suppose the ends 0,2 are held
fixed at betas 3,,5, > 0. This means that after the map (2.2), (sy, 51,52} —
(s}, 81, 85), we readjust the end occupation numbers s and s, tobe s, =
e~Phw f 7, s, = e PM /7, To achieve this physically, we must add heat equal
to Aw(sy— sy} and Aw(s, — ') at the ends. Mathematically, we just do it.

We are Jeft then with just one variable, s,(), obeying the equation

A
—L = (80— 25, + 5) - == =0 CAY

with a fixed point at s; = 5,4 s,/2. Thus the energy density, rather than the
temperature, is harmonic at a stationary distribution (reflecting the temperature -
dependence of C,). The entropy of the distribution is given by Shannon’s formula

2
S=Y_ (—szlog s — (1—s;)log (1—s,)). | (3.2)
k=0

If no heat is added or subtracted from the ends (the adiabatic case), then the
instantaneous rate of production of entropy is 5, where (s,, s;, s;) obeys the equation

.. A
(39,81, 82) = E(SI — 80y Sp— 28y + 85,5, — 8§,). (3.3)
We find

i A 1-s 1-s
S:E{(sl—so)log( = ”)—{—(30—231—}-32)]0};( P 1)

i
1-3s,

+ (s — &) log (_) } (3.4)

)
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In the motion (3.1), s, and s, are replenished and remain fixed (not changing as
in (3.3)) but we retain the interpretation of (3.4) as the rate of production of entropy
by the crystal. Ciearly the centre term in {3.4) is the rate of change of the entropy
of the centre atom, and vanishes at the fixed point of (3.1). The first term is

%(31 — 8g) log ( ) = %ﬁuﬁw(ﬁ — 8p) = =By

times the rate of heat flow from 0 to 1 = —d(dgy/T;) /dt, where dgy is the heat
supplied to keep 3, constant. Similarly, entropy dg,/T; per unit time is collected at
2 (we speak as if Ty, > T, > 0). So the interpretation of (3.4) as the rate of entropy
production agrees with elementary thermodynamics, and shows, moreover, that at the
stationary point, the process is quasistatic.

We can compute d/dtS using (3.1), ie. keeping s, and s, constant. We find

s A f /1 1 , s; V2 (1~sp)(1—sy)
L

This vanishes at the stationary point, as s, = 0 there, but the non-vanishing linear
term ensures that S has a point of inflexion, not a minimum, at the fixed point.

We see that § is decreasing in time in a peighbourhood of the fixed point $; =0
only if the argument of the logarithm is 1, which is possible only if 8, = 3, or s; = 1.
The Iatter corresponds to infinite temperature.

We conclude that the minimum entropy production conjecture does not apply to
this model.

1""30
S

4. Comparison with the model of M J Klein

The principle of minimal entropy production was critically analysed in 1956 by
M J Klein; this work has been described by Kittel [4]. A two-level atom is in contact
with a heat bath, and is maintained away from equilibrium by exchanging energy
(called ¢ in [4]) with a radiation field. Klein shows that at the stationary distribution
the rate of production of entropy is not a minimum. In this rate he included the rate
of production by the system (analogous to the middle term of (3.4)) and the rate of
increase of entropy of the heat bath (analogous to the last term in (3.4)). But he
did not include the loss in entropy of the radiation field. This omission might puzzle
some readers of [4]. It is similar to omitting the first term in (3.4).

However, no mistake was made. Although the radiation field near the stationary
point makes a net positive energy transfer per unit time to the system, this transfer
is at infinite temperature, and so does not change the entropy of either the radiation
field or the system. It is analogous to choosing 8y = 0 in our model, ie. s; = 1. In
this case the first term of (3.4) is zero.

This explanation is not clear in Kittel’s text, and is hidden in the assumption that
the forward and backward transfer rates with the radiation field, called b in [4], are
equal. This is only physically correct if the radiation ficld is at infinite temperature.

In fact, Klein’s model can be mapped into a slight generalization of ours. Suppose
in our 3-atom crystal, the diffusion rates from 0 to 1, say J,, and from 1 to 2, say A,
are unequal. Then instead of (3.1.) we would get

ds A A
d_tl = ?l(su —-3) + ?2(32 ~ 1) @.1
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Make the following change of notation in (4.1):

Sy = Pa (1~ 81) = p 32=W hw = €
1 A
g== a§=a(1+eﬁ‘) sp=1 A = 4b.

Then (4.1) becomes identical to Klein’s dynamics as given in (35.1) of [4]. Namely,
we get Klein’s equation dp, /dt = (ac + b) p, — (@ + b) p;, a = ¢, which is thus
the special case of (4.1) when the point 0 is maintained at infinite temperature (and
the point 2 at Klein's heat- bath temperature 7).

The subsequent calculations in [4] of the rate of entropy production also agree
with ours—if 8, = O the first term of (3.4) is zero. It is this term that corresponds
to the Joss of entropy by the radiation field.

Kittel concludes from this example that the principle of minimal entropy
production is nearly valid at high temperature., This is a misleading conclusion.
In our model, the principle is (trivially) exactly valid if 3, = @,, since then the
stationary point is 8; = 8, = §,, thermal equilibrium. The same point is made by
Denbigh [3]. The further 8, and 3, are apart, the worse the ‘theorem’ is. In Klein’s
case By =0, 8, = 8 = 1/7: the smaller 3,, the less the error. But if 3; # 0 the
principle gets worse as 3, — 0. We conclude that there is no reliable domain that is
not near thermal equilibrium.
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