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Heat conduction in a fermionic crystal 
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Universita Leipzig, Fachbereich Physik, Augustusplatz 10, 0.7010 Leipzig, Federal 
Republic of Germany 
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Abstract Linear diffusion in a system of non-interacting Fermion cscillators is mnstructed 
using the methods of statistical dynamics ?he temperature distribution is shown to obey 
the heat quation C,(T)aT/at = A d i v ( C . ( T ) p d T ) / Z  where C. = a(E)/aT 
is the heat capacity/molecule. An example shows that the system violates the ‘principle 
of minimal entropy production’ at a stationary state. The model mnfims the similar 
mnclusion drawn by M J Klein in 1956. 

1. Introduction and summary 

The Fermion analogue of the Einstein crystal [l] consists of non- interacting atoms, 
one at each vertex of a cubic lattice A with two energy levels, 0 and fiw. Let 
(1 - s j ,  si) denote the probability distribution of site j e  A. This defines the 
temperature Tj at j by 

s. I = e-@ifiw /(1 + e-@jBW) kBTj = 1/pj. (1.1) 

The average energy (E) of site j is f iwsj, and the specific heat/atom is C, = 
B(E) /BT = fiwas/aT. 

We shall describe the dynamics of heat conduction through the crystal by a 
stochastic model, which leads to the heat equation 

ds(z’t) = -ddivgrads(z,t). x 
dt 2 

Since s is a function of T(x, t ) ,  we get ds/dt = ds/dTdT/dt etc, leading to an 
equation for T( I, t): 

B T  A C, - = - div (C, grad T(I, t)). at 2 

At the boundary of the crystal, the inward heat flow is at the rate X/2BE(z,t) /Bn 
where n is the outward normal, and so the flow of entropy (created by the system) 
at a stationary distribution is: 
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Prigogine ef ul [2], using 'non-equilibrium thermodynamics', have suggested that the 
rate of entropy production decreases along the orbit, and reaches a minimum at the 
stationary distribution, at least, if we start in a neighbourhood of the Stationary point. 
If true for the heat equation, this would indeed be a remarkable variational principle. 
However, we show from a simple discrete model that, while $ is indeed zero at the 
stationary solution, it is not a minimum. This was shown to be the general situation 
for chemical reactions at a fixed temperature by Denbigh [3], who correctly pointed 
out the approximate nature of Prigogine's argument. A detailed stochastic model, 
suggested by Klein, shows the same result [4]. Our model turns out to be equivalent 
to Klein's in a mathematical sense; this helps to clarify the argument in Kittel' book 
141. 

2. The stochastic model 

This is an example of the construction described in [5]. Let nj = {0, I} for all j E 
A be the sample space at each point, and 52 = n .  5 2 .  be the total sample space. 
The state of the system is described by a probabdg p .'on 52; the state space of i7 
will be denoted X(n) .  If gj E E(nj), then &j = ( l - < j , ~ j ) , O <  s j  < 1.The points 
of the lattice are independent in the state p E X(52) if and only if p is a product: 
p = BjjE,, 8,. Each p E E(52) defines its marginal distributions p .  E X7nj), obtained 
by summing over alrconfigurations except the component in Q j :  

--I 

Pj(Uj) = r j w )  uj E Q j .  (2.1) 
w = n ,  w* : wj=o,  

Then @ j ~ j  is the product state with the Same marginal distributions as - p itself. We 
call BjCA p. = Q p  the Stosszuhlunsutz. It coincides with the diagonal quasifree map 
of 161 when 52 isidentified with a fermion system. It is !mown that Q is entropy 

J 

non-decreasing. 
Diffusion will be represented by a bistochastic map T : X ( i 7 )  -+ X ( n ) ,  followed 

by the map Q 

-1 S. - @ j E A 2 j  H T(@jsj) H QT(@j&j) = @ j , = A ~ i .  (2.2) 

This gives one time-step in the evolution of the state, which can be described by 

We choose T as follows. lb each pair j,k of neighbours 'in .I, consider 
the occupation numbers ~ ~ ( t ) ,  t = 0,1,2. .  ., where sj(t + 1) = s.(t). 

X(Cljz i lk) ,  on which we define 

00 01 10 11 
T j k =  00 1 

01 1 - x  x o < x < 1 .  (2.3) 
10 x 1-x 
11 1 

The product state @gj in this basis restricted to E(nj x Qk), is the &vector 
gj @sk = ((1 - sj)(l - sk),(l - sj)s,,sj(l - s k ) , s j s k ) * .  The mapping Tjk 
leaves %(i # j , k )  unchanged, and changes zj @sk into Tjk(s j  @sk), namely 
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( ( 1 - s j ) ( l - S ~ ) , ( l - X ) ( 1 - S j ) S E + X s j ( l - S k ) , X ( 1 - S , ) s E + ( 1 - X ) s j ( l -  
s E ) , s j s k )  = (p;O,~;~,p;~,p;~) say. The marginal distributions, called s;,&, are 
determined by the occupation numbers s$ = piu + pi1 = s j  + A ( s k  - s j ) ,  the 
quadratic terms cancelling. We see that the net rate of increase of s, is proportional 
to the number-particle gradient sE - s j  (k and j neighbours), with rate A. 

The full map T is the convex sum of all TjE (with equal weights). For example, 
if j ,  k are neighbours on the line i.e. k = j + 1, or k = j - 1, give rise to the convex 
sum $(q-l,j + q,i,tl) and the time evolution from this is 

s’. 1 3  = s . + f X ( s j + l - 2 s j + s j - l )  if j - l , j , j + l € A .  (2.4) 

In the continuum limit we get the heat equation for s ( x ,  t),  and in 3 dimensions we 
get similarly equation (1.2), leading to (1.3) as explained there. 

The boundary condition comes when not all of j - l,j,j + 1 lie in A, and only 
one term in i(q-l,, + Tj,jtl) is non zero. So the rate of change of s j , j  E aA, is 
~ X ( S ~ + ~  - s j ) .  This leads to (1.4) in the continuum limit. 

3. The three-atom crystal 

Take A = {0,1,2) i.e. has three atoms, and suppose the ends 0,2 are held 
fixed at betas &pZ > 0. This means that after the map (22) ,  (su,sl,sz) H 
(s;,s\,sb), we readjust the end occupation numbers s; and s; to be su = 
e-@OAw/Zu,sz = e-@zb /Zz. ’Ib achieve this physically, we must add heat equal 
to hw(so - s;) and b ( s ,  - s:) at the ends. Mathematically, we just do it. 

We are left then with just one variable, s l ( t ) ,  obeying the equation 

with a fixed point at s1 = so+ 4 2 .  Thus the energy density, rather than the 
temperature, is harmonic at a stationary distribution (reflecting the temperature - 
dependence of Ca). The entropy of the distribution is given by Shannon’s formula 
(if kB = 1) 

2 

s = (-sklog SE - (1- Sk) log (1 - S E ) ) .  (3.2) 
k=U 

If no heat is added or subtracted from the ends (the adiabatic case), then the 
instantaneous rate of production of entropy is s, where ( s o ,  sl, s2) obeys the equation 

x 
(&I,S,,~,)= z~sl-s , ,so-2s1+sz,s1-sz~.  (3.3) 

We find 

. A  1 - su 1 - SI 
S =  -{( 2 SI - SUI  log (?) t (so - 2Sl + sz) log (--) 

(3.4) 
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In the motion (3.1), so and s2 are replenished and remain fixed (not changing as 
in (3.3)) but we retain the interpretation of (3.4) as the rate of production of entropy 
by the crystal. Clearly the centre term in (3.4) is the rate of change of the entropy 
of the centre atom, and vanishes at the fixed point of (3.1). The first term is 

times the rate of heat flow from 0 to 1 = -d(dq,/T,)/dt, where dq, is the heat 
supplied to keep pu constant Similarly, entropy dq2/Tz per unit time is collected at 
2 (we speak as if Tu > T, > 0). So the interpretation of (3.4) as the rate of entropy 
production agrees with elementary thermodynamics, and shows, moreover, that at the 
stationary point, the process is quasistatic. 

We can compute d/dtS using (3.1), Le. keeping su and s, constant. We End 

This vanishes at the stationary point, as S, = 0 there, but the non-vanishing linear 
term ensures that S has a point of inflexion, not a minimum, at the fixed point. 

We see that S is decreasing in time in a neighbourhood of the k e d  point S, = 0 
only if the argument of the logarithm is 1, which is possible only if pu = 0, or s1 = i. 
The latter corresponds to infinite temperature. 

We conclude that the minimum entropy production conjecture does not apply to 
this model. 

4. Comparison with the model of M J Klein 

The principle of minimal entropy production was critically analysed in 1956 by 
M J Klein; this work has been described by Kittel [4]. A two-level atom is in contact 
with a heat bath, and is maintained away from equilibrium by exchanging energy 
(called c in 141) with a radiation field. Klein shows that at the stationary distribution 
the rate of production of entropy is not a minimum. In this rate he included the rate 
of production by the system (analogous to the middle term of (3.4)) and the rate of 
increase of entropy of the heat bath (analogous to the last term in (3.4)). But he 
did not include the loss in entropy of the radiation field. This omission might puzzle 
some readers of [4]. It is similar to omitting the first term in (3.4). 

However, no mistake was made. Although the radiation field near the stationary 
point makes a net positive energy transfer per unit time to the system, this transfer 
is at infinite temperature, and so does not change the entropy of either the radiation 
field or the system. It is analogous to choosing flu = 0 in our model, i.e. su = 4. In 
this case the first term of (3.4) is zero. 

This explanation is not clear in Kittel’s text, and is hidden in the assumption that 
the forward and backward transfer rates with the radiation field, called b in [4], are 
equal. This is only physically correct if the radiation field is at infinite temperature. 

In fact, Klein‘s model can be mapped into a slight generalization of ours. Suppose 
in our 3-atom crystal, the diffusion rates from 0 to 1, say A,, and from 1 to 2, say A,, 
are unequal. Then instead of (3.1.) we would get 

(4.1) 
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Make the following change of notation in (4.1): 

e-@€ 
1 + e- ( l - s t ) = p ,  s 2 = 7  f i w = c  SI = P2 

XI = 4b. 
p = ;  1 ? L a ( l + e B " )  S " = f  

2 

Then (4.1) becomes identical to Klein's dynamics as given in (35.1) of [4]. Namely, 
we get Klein's equation dpl/dt = (ULY + b) pz - ( a  f b) pl, CI = e@€, which is thus 
the special case of (4.1) when the point 0 is maintained at infinite temperature (and 
the point 2 at Klein's heat- bath temperature 7). 

The subsequent calculations in [4] of the rate of entropy production also agree 
with ours-if Po = 0 the first term of (3.4) is zero. It is this term that corresponds 
to the loss of entropy by the radiation field. 

Kittel concludes from this example that the principle of minimal entropy 
production is nearly valid at high temperature. This is a misleading conclusion. 
In our model, the principle is (trivially) exactly valid if po = p2, since then the 
stationary point is = po = pz, thermal equilibrium. The same point is made by 
Denbigh [3]. The further pu and pz are apart, the worse the 'theorem' is. In Klein's 
case po = 0, pz = p = 1 / ~ :  the smaller p2, the less the error. But if po # 0 the 
principle gets worse as pz + 0. We conclude that there is no reliable domain that is 
not near thermal equilibrium. 
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